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It  is well known that subgrid models such as Smagorinsky’s cannot be used for the spa- 
tially growing simulation of the transition to turbulence of flat-plate boundary layers, 
unless large-amplitude perturbations are introduced at the upstream boundary: they 
are over-dissipative, and the flow simulated remains laminar. This is also the case for 
the structure-function model (SF) of Mktais & Lesieur (1992). In the present paper we 
present a sequel to this model, the filtered-structure-function (FSF) model. It consists 
of removing the large-scale fluctuations of the field before computing its second- 
order structure function. Analytical arguments confirm the superiority of the FSF 
model over the SF model for large-eddy simulations of weakly unstable transitional 
flows. The FSF model is therefore used for the simulation of a quasi-incompressible 
( M ,  = 0.5) boundary layer developing spatially over an adiabatic flat plate, with 
a low level of upstream forcing. With the minimal resolution 650 x 32 x 20 grid 
points covering a range of streamwise Reynolds numbers Re,, E [3.4 x lo5, 1.1 x lo6], 
transition is obtained for 80 hours of time-processing on a CRAY 2 (whereas DNS 
of the whole transition takes about ten times longer). Statistics of the LES are found 
to be in acceptable agreement with experiments and empirical laws, in the laminar, 
transitional and turbulent parts of the domain. The dynamics of low-pressure and 
high-vorticity distributions is examined during transition, with particular emphasis on 
the neighbourhood of the critical layer (defined here as the height of the fluid travel- 
ling at a speed equal to the phase speed of the incoming Tollmien-Schlichting waves). 
Evidence is given that a subharmonic-type secondary instability grows, followed by a 
purely spanwise (i.e. time-independent) mode which yields peak-and-valley splitting 
and transition to turbulence. In the turbulent region, flow visualizations and local 
instantaneous profiles are provided. They confirm the presence of low- and high-speed 
streaks at the wall, weak hairpins stretched by the flow and bursting events. It is found 
that most of the vorticity is produced in the spanwise direction, at the wall, below the 
high-speed streaks. Isosurfaces of eddy viscosity confirm that the FSF model does 
not perturb transition much, and acts mostly in the vicinity of the hairpins. 
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1. Introduction 
The fundamental problem of transition to turbulence is still a challenge in com- 

putational fluid dynamics, even for very simple flows like incompressible boundary 
layers over a flat plate (see Kleiser & Zang 1991, for a review). Indeed, although direct 
numerical simulations (DNS) prove to be a very efficient tool in streamwise-periodic 
cases (temporal boundary layers, see Spalart & Yang 1987, and Spalart 1988), spa- 
tially developing flows require such tremendous resolution that one usually chooses 
to simulate just the earliest stages of transition (Thumm, Wolz & Fasel 1989; Fasel & 
Konzelman 1990; Kleiser & Zang 1991; J o s h ,  Streett & Chang 1993). Recently Rai 
& Moin (1993) performed a direct numerical simulation of the complete transition of 
a spatially growing boundary layer using several grids (a coarse one in the transitional 
region, a fine one in the turbulent region and another coarse grid to accommodate 
the outlet conditions) and a relatively high level of perturbations (the levels of the 
r.m.s. velocities are about 2.75% of the free-stream velocities at the leading edge). 
Although they prove that such a DNS is possible, the cost is still very high: 800 hours 
of a CRAY YMP. Since atmospheric or wind-tunnel residual turbulence is generally 
less intense, DNS in a more realistic situation should be more expensive. 

On the other hand, large-eddy simulation (LES) can be a more affordable alterna- 
tive, provided the subgrid-scale (SGS) model used 

dissipates fluctuations in the smallest resolved scales at an acceptable rate, 
is able to turn itself off in the absence of small-scale fluctuations. 

As far as the first point is concerned, Smagorinsky’s (1963) model has been proved 
to behave well in a fully turbulent channel flow since Deardorff’s (1970) pioneering 
simulations, with the help of an empirical damping function at the wall and a 
reduction by half of the model’s constant with respect to the value predicted in 
the only case tractable analytically, i.e. isotropic turbulence following an infinite 
Kolmogorov cascade. These simulations were repeated at higher resolution by Moin 
& Kim (1982), who showed that wall turbulence is dominated by hairpin-like vortices 
stretched by the mean flow. 

However, it soon became obvious that Smagorinsky’s model was too dissipative 
during the early stages of transition to permit simulation at a significantly lower 
resolution than in DNS. One way around this was to increase the level of upstream 
forcing, in order to overwhelm the model. Transition then occurs quicker, by-passing 
the stage during which instabilities amplify exponentially mode by mode as predicted 
by linear theories (bypass  transition, Voke & Yang 1993, with upstream forcing of 
turbulent in tensity 6 % ). 

Another solution, advocated here, is to use a model which meets better the second 
requirement mentioned above. This is the case for the spectral models (see Lesieur 
1990) based upon the concept of spectral eddy viscosity introduced by Kraichnan 
(1976). In the case of incompressible isotropic turbulence, these spectral models define 
eddy viscosities proportional to [ E ( k c ,  t)/kC]1/2, in which E ( k c ,  t )  stands for the kinetic- 
energy spectrum at the cut-off wavenumber kc. They therefore remain strictly zero as 
long as E ( k c , t )  is zero, that is, roughly speaking, until small-scale transition. In the 
most elaborate version - the spectral-cusp model - the coefficient of proportionality is a 
function of the ratio k / k c .  This non-dimensional function v?(k /kc )  remains constant 
(plateau) for small values of k / k c  and exhibits a rising cusp when k is close to kc, 
as predicted by two-point-closure stochastic theories. This cusp takes into account 
in particular, at least energetically, the effects of backscatter shown by many authors 
(see e.g. Domaradzki, Liu & Brachet 1993). In the plateau, the backscatter may be 
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shown to be negligible. The spectral-cusp model works well for flows which can be 
simulated by pseudo-spectral methods, e.g. isotropic turbulence (Chollet & Lesieur, 
1981, Lesieur & Rogallo, 1989), stratified turbulence (Batchelor, Canuto & Chasnov 
1992), and mixing layers (Silvestrini, Comte & Lesieur 1995). Unfortunately, spectral 
eddy-viscosities are difficult to implement in boundary layers spatially developing on 
a wall, where there is only one direction of homogeneity (spanwise), which poses 
problems for the determination of the kinetic-energy spectrum at the cutoff when the 
spanwise dimension is not large enough. 

Metais & Lesieur (1992) thus proposed the srructurefknction model (SF), which is 
an equivalent in the physical space of the spectral model without cusp. The kinetic- 
energy spectrum at the cutoff E ( k c , )  is evaluated ‘locally’ in the physical space, through 
the second-order velocity structure function at each grid point averaged over the six 
closest neighbouring points. This model was shown to behave very well in isotropic 
turbulence (Metais & Lesieur 1992), where it produces, in decaying situations, a good 
Kolmogorov spectrum close to the cutoff. It also works well for the backward-facing 
step flow (Silveira et al. 1993), the spatially developing wake (Gonze 1993), and 
homogeneous rotating turbulence (Bartello, Metais & Lesieur 1994). 

In the presence of strong shear as in boundary layers, only the contributions to 
the structure function which are perpendicular to the shear are considered. This four- 
point formulation of the SF model, introduced by Normand & Lesieur (1992), gave 
very good results in the case of high-Mach-number ( M ;  = 4.5) periodic boundary 
layers (Ducros, Comte & Lesieur 1995), for which the initially dominant instability 
(Mack’s second mode) is inviscid and therefore strongly amplified : the model allowed 
reproduction of the results of DNS during the transitional period (Pruett & Zang 
1992; Adams & Kleiser 1993), and furthermore could reach the turbulent regime, 
which would have been impossible in DNS at a comparable resolution. In the spatially 
developing case, encouraging results were obtained at Mach 5 in the transitional 
region, still using the structure-function model in its four-point formulation without 
any specific compressibility correction (Normand & Lesieur 1992). 

However, for incompressible boundary layers, the SF model, either in its six-point 
or four-point formulation, is not really better than Smagorinsky’s during the early 
stages of transition. This is because the local kinetic-energy spectrum E,(k,)  arising 
in the eddy viscosity, and computed in terms of the structure function as if the flow 
were isotropic. is in fact sensitive to large-scale fluctuations. More precisely, it will be 
shown in the present paper that it is when oblique modes start developing above the 
Tollmien-Schlichting waves that the SF eddy viscosity becomes too dissipative. 

At this point, we point out that Germano et al. (1991) made Smagorinsky’s model 
‘dynamic’ by adjusting its constant locally after a double filtering. In order to remove 
singularities, averages of the model constant had to be made in planes parallel to 
the wall. They could simulate transition of a periodic incompressible channel flow 
with not too high a level of initial forcing (2% amplitude). With a resolution up to 
48 x65 x64 points, they obtained statistics coherent with DNS at higher resolution. We 
are not aware of dynamic-model applications to spatially developing boundary-layer 
simulations, such as those presented below. 

In the filtered structure-function model presented here, we filter out the large-scale 
fluctuations of the flow with the aid of a third-order Laplacian discretized by second- 
order finite differences, before computing the second-order structure function. This 
new ,filtered structure_fLnction model (FSF) is employed to simulate transition of a 
quasi-incompressible boundary layer (external Mach number M ,  = 0.5) developing 
spatially over an adiabatic flat plate, with a low level of upstream forcing (less than 
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1% amplitude) and affordable resolution (650 x 32 x 20 points). In fact, our aim 
is to show the feasibility of LES for transition in an incompressible boundary layer 
over a flat plate. We use for that a compressible code developed by Normand & 
Lesieur (1992), at an external Mach number such that the flow close to the wall is 
quasi-incompressible: at xz = 12 (the production peak, see below) , the velocity is 
NN 0.3U,, and the Mach number NN 0.15. In a forthcoming paper, and in order to 
study the effects of compressibility, temporal and spatial simulations of a boundary 
layer at Mach 4.5 will be presented (see also Ducros 1995). 

The paper is organized as follows: 92 presents the subgrid model, $3 the computa- 
tional domain, and $4 the results of the simulations. 

2. Subgrid-scale modelling 

conservative form : 
The compressible Navier-Stokes equation can be cast in the following pseudo- 

au aF1 aF2 a~~ 
at axl a X 2  a X 3  - -+- -+-++=o,  

with 

pe being the total energy defined by, for an ideal gas, 

pe = p C, T + ip(u: + ui + u:). (2.3) 

The fluxes Fi read, V i  E {1,2,3), 

k = p c , ~  being the thermal conductivity (and IC the thermal diffusivity). 
The components oij of the stress tensor are given by the Newton law 

in which 

denotes the deviatoric part of the strain-rate tensor. Bulk viscosity is neglected, as is 
commonly accepted, except in extreme thermodynamical situations. This yields 
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Sutherland's empirical law 

T 1 + S/273.15 
,u( T )  = ~(273.15) ___ 

(273.15) 1 + S I T  
with 

~(273.15) = 1.711 x PI and S = 110.4 K 

is prescribed for molecular viscosity, although the temperature variations are small in 
all the applications presented in this paper. Conductivity k( T )  is obtained assuming 
the Prandtl number P r  = cPp( T ) / k (  T )  constant and equal to 0.7, as in air at ambient 
temperature. The equation of state 

p = R p  T (2.9) 

closes the system, with R = C, - C, = 3?/& = 287.06 Jkg-IK-' for air. 
We omit here the details of the LES filtering procedure in the case of compressible 

turbulence, since compressibility effects are very low in our study. These details can 
be found in Ducros (1995) and Ducros et al. (1995). Basically, ,u and k arising in (2.7) 
are replaced respectively by p + pv, and k + pv,c,,Pr;', where the eddy viscosity vt 
will be specified below, and Pr ,  is a turbulent Prandtl number taken equal to 0.6 as 
in isotropic turbulence. p now stands for the resolved density obtained by projection 
onto the computational grid; u then denotes the resolved velocity field, associated to 
p in the sense of Favre averages (Favre 1965). 

Now we present the FSF model as if the flow were of constant density. In the 
SF model (Metais & Lesieur 1992), it is assumed that the subgrid scales are close to 
isotropy and follow a Kolmogorov cascade. The cusp is also neglected. By subgrid 
energy conservation arguments, 

(2.10) 

is obtained, in which CK is the Kolmogorov constant and E, (kc )  the local kinetic- 
energy spectrum at kc = n/4 of the resolved velocity field u. This spectrum is 
determined in terms of the second-order structure function of u, as if the turbulence 
were isotropic (Batchelor 1953): 

sin k A  -1 kd dk. (2.11) 

In practice, F2(x,d,t) is computed over the six closest neighbours of point x when 
the computational grid is uniform with cubic meshes. This is the six-neighbour 
formulation: 

For wall-bounded flows with meshes flattened in the direction x? normal to the wall, 
the four-neighbour .formulation proposed by Normand & Lesieur (1992) is used. It 
reads 

llUi+l,j.k - U/ , j , k  1 1 2  f llui-l,/,k - ui,j,k 11' 

(2.13) 



6 F. Ducros, P .  Comte and M .  Lesieur 

The four-neighbour formulation is insensitive to velocity gradients normal to the wall, 
most of which come from the mean flow. 

The expression for the SF model can be obtained very quickly by applying the 
mean-value theorem to (2.1 1) : assuming E continuous, there exists a wavenumber 
k, E [0, k,] such that 

The value of k, depends on the distribution of the resolved energy spectrum E,(k, t )  
over the whole span [0, k,] ; however, in the particular case of an infinite Kolmogorov 
cascade, one can replace E,(k,  t )  in (2.14) by CK ~ * / ~ ( t ) k - ~ / ~  for all k E [0, k,], yielding 

Then ( 2 . 1 0 )  reads 

r 

(2.15) 

(2.16) 

from which k,, is eliminated thanks to (2.15), yielding the SF model 
-112 

v,(x,  t )  = - 3 cK-3/2n-4/3 tP5I3 [l - y]  dc] A [F~(x,A,~)]'/~ 
\ / .. 

co 

0.105 C K - ~ / ~  A [F~(x, A, t)]1'2, (2.17) 

since CO is: 0.478. 
In the filtered structure-function model, and in order to get rid of the large scales in 
the evaluation of vt, we apply a high-pass filter to u before computing its structure 
function. We chose a discrete Laplacian filter H P ( ' )  iterated n times: 

-(") ICt,j,k - - H P ( " ) ( U , , k )  (2.18) 

for n 3 1, with 
- - ( I )  = 
uI,lp H P ( ' ) ( u , j , k )  = Ut+l,j,k - k , j , k  f Ut-1,jk 

+Ut,j+l,k - 2U1,j.k + ui,j-l,k + %,,,k+l - 2U~,j,k + Ut,j,k-l (2.19) 

when the six-neighbour formulation (2.12) is used, and 

-iu - 
u i,ih . - HP( ' ) (Ui , j , k )  = Ui+l,j,k - 2Ui,j,k + ui-1,jh $. ui,j ,k+l - &J,k f &,,&I (2.20) 

when the four-neighbour formulation (2.13) is preferred. 
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Let 2:’’ be the spectrum of the field $‘I .  It may be shown on some three-dimensional 
isotropic fields (white noise, Gaussian noise, developed isotropic turbulence, see 
Ducros 1995) that 

(2.21) 

with f l  x 3.05. It is different from the value f l  = 4 one should have for a true 
Laplacian, because of the finite differencing. Then, when the filter H P  is applied n 
times, one obtains 

(2.22) 

When M is increased, the weight of the filter in the neighbourhood of kc becomes 
more and more important, which is favourable for the purpose of eliminating the low- 
frequency oscillations. On the other hand, the boundary-layer simulations carried out 
with the filtered structure-function model developed below will blow up with n > 3. 
In this respect, the value M = 3 is the best choice. The Batchelor-type relationships 
(2.11) and (2.14) still hold when E,  and F2 are replaced by their high-pass-filtered 

counterparts Ey’ and & “ I ) ,  respectively. Assuming, as in (2.15), a Kolmogorov cascade 
for E ( k ,  t )  for all k E [0, k , ] ,  one gets 

- 

( [ I  - F] dk 

(2.23) 

E,(k,  ) / k c  is now replaced by (k , . /k , . ) -”’E,(k, . ) /k ,  = 40-” (k , . / k , . ) - ’~ ’+”~’~~! ’ ) (k , , ) / k , ,  in 
(2. lo), yielding 

1 
-312 Yr( t )  = CK 

3 

Elimination of k ,  gives 

1 /? 

F2‘ t1 ’ (x ,  A ,  t )  - L] (2.24) 
4 1 “  [ I  - dk k, 

r 1 -‘ 
the following eddy viscosity for the FSF model: 

l , ?  
v , ( x ,  t )  = 0.0014 CK-’” A [-‘”(x, A ,  t ) ]  . (2.26) 

We stress that in this formulation we have in fact evaluated the kinetic-energy 
spectrum E x ( k C )  arising in equation (2.10) with the aid of a fictitious isotropic 
velocity field where large-scale fluctuations have been filtered out. 

With this value of n = 3, the FSF model (FSF3) has worked successfully in the case 
of incompressible decaying isotropic turbulence at zero molecular viscosity (Comte 
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et al. 1994; Ducros 1995). Here, a pseudo-spectral (hence non-dissipative) code is 
used at a resolution of 64’, and the same kinetic-energy spectra are obtained as with 
the SF model. We recall that in this case the SF model gives energy spectra much 
closer to Kolmogorov’s than Smagorinsky’s model does (Metais & Lesieur 1992), 
and very close to the ones obtained with the dynamic model in the formulation by 
Ghosal et al. (1995). The FSF’ model, still at zero viscosity and with pseudo-spectral 
methods, turns out to be equivalent to the spectral-cusp eddy viscosity model, and 
less dissipative than the SF or Smagorinsky models for an incompressible temporal 
mixing layer forced quasi-two-dimensionally (see Silvestrini et al. 1995) : the Kelvin- 
Helmholtz (KH) vortices are bigger, and the longitudinal hairpin vortices stretched 
in between are stronger. In the same paper, it is shown that, for a spatially growing 
mixing layer forced upstream quasi-two-dimensionally, the roll-up of K H  vortices 
occurs about twice the distance downstream with the SF than with the FSF models. 
In this respect, the FSF model describes more properly the KH instability, which is 
inviscid and should not be affected by the subgrid model. 

It has to be stressed that, like the SF model, the FSF model has no cusp from the 
Fourier point of view. It is only the kinetic-energy spectrum at kc which is calculated 
in terms of a field where the large-scale fluctuations have been eliminated with a 
cusp-like filter. In this sense, there is no spectral backscatter in the FSF model. 
There is no backscatter in physical space either, since the eddy viscosity is always 
positive. However, it is well known from the works using the dynamic-modelling 
approach that negative eddy viscosities are not desirable in the sense that they yield 
computational instabilities. This is why the constants arising in the dynamic models 
have to be averaged in certain directions or planes in order to prevent these numerical 
problems. Another possible criticism of the FSF model is that it still relies upon the 
assumption of a Kolmogorov spectrum at the cutoff. At this point, we mention the 
model proposed by Lamballais, Lesieur & Metais (1996), where the spectral eddy 
viscosity (with a cusp) is corrected by a function of the kinetic-energy spectrum slope 
at kc ,  derived from EDQNM non-local expansions (see Metais & Lesieur 1992). This 
‘dynamic spectral model’ gives very good results for a turbulent channel, as far as the 
first- and second-order statistics are concerned, and should prove to be useful in the 
spatially growing boundary layer. 

The superiority of the FSF model over the SF one for transitional flows is evident 
when looking at its asymptotic behaviour in the case of a discrete longitudinal sine 
wave Zl,,,k = U cos(coi+g5) of pulsation o = k A  = nk/k ,  and phase 4, in the long-wave 
limit o - 0. For this signal, the second-order structure function given by (2.12) or 
(2.13) satisfies 

~ 2 ( x ,  A ,  t )  = V{ [2 sin2 41 w2 + [4i cos 4 sin 41 o3 

(2.27) 

i.e. scales in general on co2. The eddy viscosity given by the SF model then scales on 
o. On the other hand, 

- (n) F2 = [ ~ ( C O S  - l)]” F2, 

which gives a scaling in co2n+1 for the FSF model. 
(2.28) 
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' Re,,= 338 000 ~ Re,,=l 150000 

FIGURE 1. Spatially developing boundary layer over a flat plate; the computational domain extends 
between 0 and 8126, (after Guo et a!. 1995). 

3. Calculation procedure 
We present the large-eddy simulation of a forced boundary layer at M ,  = 0.5, 

developing spatially in the laboratory frame. We thus have p 2  = 1/(yM2)p,U: 
x 5.7(ip,&;) and the external temperature is T, = 273 K. The FSF' model is used 
in its four-points formulation (2.13), (2.18) and (2.20). 

Let xl ,  x2 and x3 denote the streamwise, transverse and spanwise directions re- 
spectively. The calculation box has the following dimensions: L1 = 812di, L2 = 2&, 
L' = 22&, in which 6; = a l ( x l  = 0) denotes the upstream displacement thickness. 
The numbers of grid points in each direction are N ,  = 650, N 2  = 32 and N3 = 20, 
respectively (see figure 1, after Guo, Adams & Kleiser 1995). 

The upstream Reynolds number based on 6, is Re6, = 1000. Assuming a Blasius 
spreading law from a fictitious leading edge at abscissa / (negative) and the upstream 
boundary x l  = 0, one has (see e.g. Schlichting 1987) 

which yields t' = -3386,, hence Re,, = [(xl - P ) / 6 , ]  Re,, E [3.4 x lo5, 1.15 x lo6] for 
x1 E [0, Ll]. This should permit observation of the complete transition. 

The simulation is carried out using the code described in Normand & Lesieur 
(1992). The grid, uniform in the streamwise and spanwise directions, is stretched in 
the direction normal to the wall, the height of each grid point being given by 

The constant C controls the stretching (C = 0.03 in our case). The mesh line j = 2 lies 
at x2 = 0.13&, which corresponds to x: = 4.7, with a friction velocity u, = O.O38U, 
typical of the turbulent region in our simulation (see the next section). In the 
same way, Ax, = 1.25& and Ax3 = 1.16di correspond to Ax: = 44 and Ax: = 41, 
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respectively. This can be compared with the resolution (Axr,Axl) = (80,14), and 
x$ = 1 for the first point near the wall, chosen by Yang & Voke (1993) for their LES 
of by-pass transition and (AxF,Axi) = (28, lo), chosen by Rai & Moin (1993) for 
their DNS. 

By comparison with the resolution required for DNS in the temporal case 
(AxT,Axi) = (20,6.7) and x2+ = 1 for the first point near the wall (Spalart 1988), 
our resolution near the wall is too low to expect a good description of the viscous 
sublayer in the turbulent regime. This will be at the origin of a decrease of the velocity 
gradient at the wall, and hence of the friction velocity, with respect to measurements. 

At the wall, we prescribe a no-slip condition for the velocity (u = 0) and an 
adiabatic condition for the temperature : (8 T / d ~ 2 ) , ~ , ,  = 0. We assume periodicity 
in the spanwise direction and adopt non-reflective boundary conditions prescribed 
through the Thompson characteristic method for the outflow and the upper boundary 
layer (Thompson 1987). 

The upstream boundary condition is given by 

U ( ~ , X Z , X ~ , ~ )  = Ulam(x2) + 5 x 1 0 - 3 f i ( ~ 2 )  + 8 x 10-3Urand(~2,~3,t) ,  (3.3) 

where Ulam(x2) is the laminar solution of the similarity equations, ~ ( X Z )  is the most 
amplified eigenmode of two-dimensional Tollmien-Schlichting (TS) waves (wave- 
length Ars  = 21&), and Urand(x2, x3, t) is a randomly chosen three-dimensional white 
noise of variance U i .  The amplitude of the two-dimensional forcing is relatively low, 
just high enough to trigger the secondary instabilities which develop on the TS waves: 
Spalart & Yang (1987) did not observe transition through secondary instability for 
amplitudes of TS waves below 4 x 10-3U,. The level of three-dimensional forcing is 
of the same order as residual turbulence for in-flight conditions. 

At t = 0, we impose a two-dimensional Blasius-like profile resulting from the 
resolution of the similarity equations. We perform the three-dimensional simulation 
during a period 2.25TA, where TA = 23206i/U, is the time required to travel 
downstream through the computational domain at the propagation speed c = 0.35Um 
of the waves we observe (see the discussion in 54.3). This is long enough to reach 
the steady regime. Time sampling is then performed for a short period, T A / l O .  The 
whole operation requires about 80 hours of CPU time on a CRAY 2, which is about 
10 times less than the DNS of Rai & Moin (1993). 

All the visualizations presented here are taken at the final time-step of the calcula- 
tion (after time sampling). In some of them (figures 13-16, 18, 19, 22-24, 28-30), the 
domain is duplicated in the spanwise direction owing to periodicity, in order to give a 
better idea of the flow topology. In fact, our calculation domain is very narrow, since 
its spanwise extent is of the order of one upstream TS wave. In this respect, it may 
be considered as a minimal spatial boundary layer, in the same sense as the ‘minimal 
channel’ simulated by Jimenez & Moin (1991). 

4. Results 

The streamwise evolutions of the time- and-spanwise-averaged 

4.1. Quality check 

displacement thickness (&)(xl), 
momentum thickness (62)(x1), 
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shape factor H12(x1) = ( & ) ( X I  )/(62)(.xl), 
skin-friction coefficient 

are shown figure 2, together with (in dashed lines) the following laminar and turbulent 
empirical laws, found in Cousteix (1989): 

and 
5 / 6  

61,u,(x1) = 0.0309 Re;"' (:.I,/.> , 
516 

6 ~ , ~ ~ ( x , )  = 0.0221 Re,"' (v) , 

(4.24 

(4.2b) 

(4 .2~)  

(4.3a) 

(4.3b) 

(4.3c) 

In (4.3), self-similar turbulent spreading is assumed immediately from a virtual leading 
edge at abscissa b'. From figures 2(a,b),  the best fit is C' = 1256,, which makes our 
Cj under-estimated by 25%. Consequently, our turbulent velocity profiles depart 
somewhat from the expected law of the wall, especially in the logarithmic region 
(figure 3). Note that a similar trend is observed, to a much lesser extent, in the DNS 
of Rai & Moin (1993). 

On the optimistic side, the exponents 5/6 and -1/6 are not too badly estimated 
between X I  = 470& and, at least, 65Ohi, i t .  Re,, E [0.88 x loh, 0.99 x 10'1; the laminar 
laws are correctly recovered, which is a good point for the FSF3 model. The shape 
of the curves during the transition conforms to expectations (in particular the dip 
of ( h , ) ,  but not of (&), see e.g. Cousteix 1989, p. 298). The shape factor decreases 
from the Blasius value of 2.6 down to 1.5, which is slightly larger than the expected 
value 0.0309/0.0221 = 1.4. In fact, this value depends on the Reynolds number 
after transition, which is Re,,, =z 1900 in our case. For Red, x 2000, Murlis, Tsai & 
Bradshaw ( 1982) and Spalart (1988) report 1.45 and 1.43, respectively. 

From figure 2(c), one can work out a 'transition point' at x l  = 250& and hence a 
'transition Reynolds number' Re,, x 0.59 x lo6. In natural transition, this value would 
be obtained for a level of free-stream turbulence of intensity of 1% (experiments of 
Hall & Hislop 1938, see the review in Schlichting 1987), probably through a different 
scenario of transition. 

4.2. Streaks 
In order to help the interpretation of the visualizations that follow, the instantaneous 
extrema of vorticity, velocity and pressure are plotted as a function of xl ,  in figures 4, 
5 and 6, respectively. The solid lines correspond to values recorded at the wall, 
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FIGURE 2. Streamwise evolution of the time- and-spanwise-averaged displacement and momentum 
thicknesses, skin-friction coefficient and shape factor (a, b, c and d, respectively). The dotted lines 
correspond to the empirical laws (4.2), and the dashed ones to their turbulent counterparts (4.3) 
with d' = 1256,. 
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FIGURE 3. Time- and-spanwise-averaged velocity profile U +  = (u l ) /u ,  as a function of x l  = 
pmu,x2/p = ( ~ C j ) 1 / 2 R e ~ L x 2 / 6 i  for six streamwise positions, together with the usual laws of the wall, 
U+ = x: and Uf = lnx:/0.41 + 5. Our profiles no longer evolve from Re, = 0.77 x 106 onwards. 
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FIGURE 4. Streamwise evolution of  the extrema of vorticity at given xl. The axes are normalized 
by 6, horizontally and U,/6, vertically: (---) and instantaneous min and max values a t  the wall 
(. . . . . ,), away from the wall. The thick line in ( c )  is the time- and-spanwise-averaged (03 at  the wall. 

the dashed lines to interior points. The streamwise vorticity component (figure 4a) 
remains close to zero up to transition. Downstream, the minima and maxima of o1 
oscillate in a fairly symmetrical fashion, between -0.8U,x/6i and O.SU,/Si. These 
extrema are very localized, and are reached at the wall. In contrast, the 'vertical' 
vorticity component 02, which is necessarily zero at the wall, behaves more calmly 
with a quasi-uniform distribution of extrema at z +O.ZU,/S,. The heavy solid 
line in figure 4(c) is the time- and-spanwise-averaged spanwise vorticity at the wall 
( O ~ ) ~ ( X , )  = - [~(u1) /~x2] . .  = - (pz/pW)u:  (i.e. figure 2c again, from a different point 
of view). In the laminar regime, ( O ~ ) ~ , ( X I )  and u, are of the order of -0.5U,/Si 
and O.O25L', respectively. After transition, they become rrz -1.5UJ6; and O.O38U,, 
respectively. At the wall, the lowest values of 03 are = -3.5U,/Si, which corresponds 
to shear more than twice as large as its mean value. These minima are correlated with 
the extrema of (ul mentioned above. More regular is the distribution of the maxima 
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FIGURE 5. Same as figure 4 but for the instantaneous extrema of velocity fluctuations 
(normalized by U z ) .  The extrema of 212 are the same as those of ui. 

of o3 at the wall, their typical value being close to -O.5Um/6,, which is reminiscent of 
the laminar regime. It is tempting to associate these maxima with tow-speed streaks, 
as defined in Klebanoff, Tidstrom & Sargent (1962) as the result of peak-and-valley 
splitting of the whole turbulent flow. Since these maxima are FZ U,/6, above the 
mean, we a priori expect high-speed streaks in which the minimal values of 0 3  would 
be about U,/6, below the mean, i.e. between FZ -2SU,/6,. In figure 4(c), this 
corresponds to an average value of the minima, but not to the peaks at -3.5U3,/6, 
mentioned above, which are also associated with peaks of streamwise vorticity. These 
intermittent peaks are then likely to correspond to violent vortical events occurring 
within high-speed streaks. They are associated with peaks of streamwise velocity 
fluctuations (figure 5a) at about +O.5Um, the average value of the extrema of ui being 
half the size, with a symmetrical repartition between positive and negative values 
(except maybe between 2506, and 4006, where the curve of the minima oscillates 
more than that of the maxima). The 'vertical' velocity fluctuations ub remain small up 
to FZ 4006,. From there, they rapidly reach +O.lU,, with peaks at +0.2U, apparently 
related to the violent events mentioned above. This is somewhat surprising because 
the vertical velocity fluctuations are expected to be negative in the high-speed streaks. 
We will come back to this point later. 

The extrema of spanwise velocity fluctuations (figure 5c) start taking off as from 
x1 = 2506,, where they level off at +O.lU,, with an episode at +O.ZU, between 4006, 
and 5506,. From the inlet to x 3006,, the pressure extrema (figure 6) oscillate at 
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FIGURE 6 Streamwise evolution of the extrema of pressure, normalized by ps = (l/yM2)p,U: 
= 5 7( i p 7  Ug ) at given x, /h, ,  at the wall (solid line) and away from the wall (dotted lines). 

FIGURE 7. From top to bottom: map of 0 1 3  at the wall. and five slices of u; at the following 
heights (the rightmost column assumes u, = 0.038Cr,, which is an average value over the region 
XI /6, t 1470,6501 1 

j xz lb ,  xi 

8 1.10 39 
12 1.98 71 
17 3.52 127 r 22 5.92 216 

approximately constant amplitude and wavelength, the latter being that of the TS 
waves injected. i t .  216;. At the wall, the curves of minimal and maximal pressure (solid 
lines) collapse. showing that these waves remain two-dimensional as they propagate. 
This is also true away from the wall, the amplitude of the oscillations decreasing as 
the distance to the wall increases. Between = 3006, and 400d,, i.e. where most of the 
changes in the mean velocity profile occur (see figure 2 4 ,  the pressure fluctuations 
practically vanish. It is only from 4006; that the pressure extrema exhibit a turbulent 
behaviour, with an average amplitude of about i2 x 10p’py, i.e. = +1O-’(ip,U$), 
and peaks at &10-’ py-, i.e. = k6 10-2(tp,U,:-), which is rather small in comparison 
with the values recorded in free-shear flows like mixing layers and jets. In contrast to 
isotropic turbulence or free-shear flows, the high-pressure fluctuations are as large as 
the low-pressure ones. Note that the event at 4106, mentioned above (that might not 
deserve the epithet ‘violent’ after all) corresponds to a peak of high pressure at the 
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FIGURE 8. (a )  Transitional region: vortex lines and isosurfaces (same thresholds as for (h) ) .  
( h )  Turbulent region: isosurfaces 0 3  = -1.2U,/Si (white) 0 2  = 0.12UX/6, (red), w2 = -0.12U,/6, 
(blue), u{ = 0.20Um (yellow) and u', = -0.20U, (green); vortex lines originating from 80 points, 
randomly selected, where -03 is larger than U,/S,. 

wall, the other peaks being preferentially reached away from the wall. It therefore 
seems that this first peak at the wall is of importance, and that it plays a role in the 
transition process. 

Contour maps of skin friction coefficient and streamwise velocity fluctuations like 
figure 7 can be criticized for being too dependent on the choice of the colourmaps. 
They are nevertheless good at giving a general overview of the flow. In particular, 
they confirm the clear-cut character of the three regions identified above : 

(i) from the inlet to x1 x 250& we can see the two-dimensional signature of the 
TS waves we use for the forcing. One can check visually that their amplitude and 
period hardly change as they propagate downstream. 

FIGURE 9. Contour maps of u', at  i = 332 (i.e. xl = 4146, and Re, = 0.75 x lo6) on the left, and at  
i = 582 (i.e. x, = 727~5, and Re, = 1.11 x lo6) on the right. The positive values are in purple, the 
negative in yellow. 

FIGURE 17. Slice of (0; with a colourmap which emphasizes the small variations around the mean. 
The white and dark isosurfaces correspond to p = 1.O01px and 0.999p,, respectively, that is, 
p1 0.002 ( i p x  U;). In order to make them more visible, the whole view is tilted by 1" around the 
x2 axis. Note that, because of the slice, only the portion x3/S1 E [20,22] of the domain is visible, 
which masks the growing three-dimensionality of the isosurfaces. 
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FIGUR~ 8( h) .  For caption see facing page. 

FIGURE 9. For caption see facing page 
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FIGURE 17. For caption see facing page 
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(ii) From x1 w 2506, to 4006,, i.e. Re,, w 0.74 x lo6, oblique waves emerge in a 
staggered pattern, followed by a streamwise instability giving rise to streaks. This will 
be discussed below, in 94.3. Note that ( & ) ( X I )  keeps decreasing in this region. 

(iii) From XI = 4006, onwards, the streaks rapidly become turbulent, but keep a 
strong streamwise coherence which might be forced by our domain being narrow. 
Indeed, figures 7 and 8 show structures stretching longitudinally over 1006,, i,e. 3800 
wall units, with the value u, = O.038Um typical of the region x1/6, E [470,650]. The 
length of the streaks in wide boundary layers or plane channels is N 1000 wall units. 
In the same vein, because of our low resolution, the spanwise ‘period‘ of the streak 
system is widely over-estimated: we have, on average, two periods of streaks within 
the span. Our streak spacing is thus of the order of lid,, i.e. about 400 wall units, 
.which is four times the commonly accepted value. 

Figure 7 also confirms that drag (i.e. 1031 at the wall) is large below the high- 
speed streaks, and close to its laminar value below the low-speed streaks. More 
precisely, figure 8(a,b) shows that the regions of high drag literally creep at the wall 
(the thickness of the white isosurface 0 3  = -1.2UJ6, is never larger than 15 wall 
units). The vortex lines which pass through them (in light blue) are oriented spanwise, 
without much three-dimensionality even in the turbulent portion of the domain. They 
wiggle in phase, which indicates the presence of a purely spanwise (i.e. independent of 
time) unstable mode. Although our resolution at the wall is too low to be conclusive, 
there do not seem to be any streamwise vortex tubes in the near-wall region. In 
contrast, the vortex lines located higher up, not shown here, carry less vorticity but 
tend to form hairpins. 

In order to give an idea of the vertical extent of the streak system, figure 8 also 
shows the isosurfaces u{ = f0.2U, (high-speed in yellow, low-speed in green) and 
that of vertical vorticity 0 2  = kO.12Us/6, (positive in red, negative in blue). These 
thresholds correspond to the average values of the extrema plotted in figures 5 
and 4. The respective arrangement of these isosurfaces conforms to the model of 
peak-and-valley splitting introduced by Klebanoff et al. (1962). In particular, vertical 
vorticity is created between the high-speed and the low-speed streaks, which explains 
the flat vertical shape of the red and blue isosurfaces which surround the high-drag 
regions. Their height is approximately the same as that of the ui isosurfaces: w 200 
wall units, which is larger than the average vorticity thickness of the layer. We 
therefore can say that the peak-and-valley splitting practically concerns the whole of 
the boundary layer. However, cross-sections of the u’, field (in particular figure 9a,b) 
shows concentrations of u{ lying between 10 and 55 wall units away from the wall, 
i.e. in the buffer region. 

Figure 9(a,b) is taken where u; reaches its extrema, and the corresponding local 
instantaneous profiles are plotted in figure 10, showing points of inflection in the low- 
speed streaks (solid line with stars), both in the transitional and the turbulent regimes 
( (a)  and (b )  respectively). Plotted in wall units using time- and-spanwise-averaged 
values of uT, these profiles collapse in the outer region but strongly differ close to the 
wall (figure 11). In particular, we find again from figures 10(b) and l l (b)  that the 
average wall shear stress is under-estimated, since the low-speed profiles are closer 
to the average profiles (shaded triangles) than the high-speed ones (hollow triangles). 
This shows up again when these profiles are redrawn using local instantaneous 
values of u, (figure 12) instead of its average value, in order to make them collapse 
close to the wall: in contrast with the high-speed profile, the low-speed profile in 
the part (b )  does not change much, because its local u, is close to the average. 
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FIGURE 10. (a)  Local instantaneous velocity profiles at X I  = 4146, (or Re,, = 0.75 x lo6), where u', 
reaches its minimum, MinU;. The local maximum at the same abscissa is denoted maxU;. (6) As 
(a)  but same at x, = 7286, (or Re,,  = 1.07 x lo6), where u', reaches its maximum. 

FIGURE 11. Same as figure 10, in wall coordinates. using time- and-spanwise-averaged values of u,. 
The dotted and dashed lines correspond to the laws of the wall U+ = x: and U+ = Inx:/0.41 + 5 
respectively, as in figure 3. 

When the levels of the u', isosurfaces are reduced by a factor 2: 10 (figure 13), 
'laminar-looking' streaks become visible between about 3206, and 4006,, that is, 
Re, E [0.66 x 106,0.74 x lo6]. Note that this interval corresponds to the transition 
region, where the velocity profile changes from laminar to turbulent. These streaks 
start looking turbulent from the high-pressure event at x1 = 4106, mentioned earlier. 
Calculations at higher resolution will be performed soon in order to clarify what is 
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FIGURE 12. Same as figure 11, but using the local instantaneous values of u, 

FIGURE 13. Isosurfaces u’, = 0.024Um (white) and u; = -0.024Um (dark). The domain ha; been 
duplicated in the spanwise direction. 

going on there. For the moment, all we can say is that this event (which appears as a 
white spot of large positive u\ in figure 7) coincides with a region where a ‘laminar- 
looking’ high-speed streak (in white in figure 13) pitchforks, yielding a ‘turbulent- 
looking’ low-speed streak (in dark) flanked by two ‘turbulent-looking’ high-speed 
streaks. It therefore seems reasonable to conjecture the presence of a stagnation point 
at the wall, which would account for the high-pressure peak observed in figure 6. On 
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FIGURE 14. Map of the wall pressure, with a colour map which emphasizes the small variations 
around the mean. The white isosurface corresponds to a lower value: 0.996 p z  z p,-0.023 ( i p x  U i ) .  
Domain duplicated. 

the other hand, we have no clear explanation for the ‘pitchforking’ of the streaks, two 
arguments (at least) being plausible: 

(i) oblique modes yielding ‘branchings’ or ‘defects’ in the streak system (see e.g. 
Comte, Lesieur, & Lamballais 1992, for analogous dislocations in mixing layers), 

(ii) the frozen-fluid hypothesis (Taylor 1915), supported by the fact that pressure 
is quasi-uniform in the region of the ‘laminar-looking’ streaks (see figure 6):  a fluid 
particle in a high-speed streak would thus propagate maintaining its velocity (i.e. 
positive u’, and negative u;)  up to viscous damping, until it reaches the wall and 
creates a stagnation point. 

In  any case, figure 13 is clear evidence of the emergence of a purely spanwise 
(i.e. independent of time) unstable mode, in a region where the velocity profile starts 
becoming turbulent without any hairpin vortex being formed or ejected yet. 

4.3. The early-transitional stute 
We recall that the eigenmode 6 we use for the upstream forcing corresponds to the 
most amplified mode of the basic flow UlUrn(xz) at Ren = 1000, as predicted by the 
linear-stability theory within the temporal approximation (i.e. assuming streamwise 
periodicity). In the simulation, two-dimensional TS waves travel, as a whole, without 
noticeable amplification or damping, at the velocity c = 0.35U,, which is not far 
from the phase speed c, = 0.321 U ,  of mode fi given by the aforementioned theory. 

The signature of these waves on the pressure field at the wall is shown in figure 14, 
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X 

FIGURE 15. Top view of the transitional zone showing the isosurfaces 01 = +O.lU,/S, (in black) 
and, in grey, p = 0.999 px = pr - 0.006 (ip, U:) .  Domain duplicated. 

X 

FIGURE 16. Same view as figure 15, but with the isosurface u2 = O.O07U, (grey) instead of the 
low-pressure isosurface. Domain duplicated. 

together with an isosurface of low pressure which will be commented upon later. This 
figure is essentially relevant to the laminar stage of the flow, for which the pressure 
extrema are at the wall (see figure 6). From 2506, to 3206,, we can see the emergence 
of an oblique sub-harmonic mode, although only one half of its spanwise period 
is actually simulated. We will try to show later that this is a mode of secondary 
instability (of the H-type, after Herbert 1988) and not, for example, an oblique TS 
wave. In any case, we see clearly the formation of A-shaped structures of low pressure, 
arranged in a staggered pattern. In contrast, the high pressures lose momentarily 
their spatial organization. Note that we can only see half a streamwise period of 
this oblique sub-harmonic instability (is. one TS period). Figure 15 shows weak 
streamwise vorticity (of the order of one tenth of the spanwise vorticity at the wall), 
which appears on the legs of the A-shaped structures of low pressure. This might 
contribute to the disruption of the high-pressure structures. Figure 16 shows, for the 
same transition zone, the longitudinal vorticity as well as the positive vertical velocity 
at a very low threshold. Before transition, the fluid rises upstream of the A-shaped 
low-pressure rollers. During transition, fluid originating from the near-wall region is 
pumped between their legs. The isosurfaces of vertical velocity, previously organized 
in purely spanwise stripes on the edge of the two-dimensional TS billows, follow the 
spatial organization of the streamwise vorticity during the transition. 

Another picture of the early-transitional region is given in figure 17 (see page 17), 
which shows isosurfaces of low and high pressures cut by a map of 0; at x3 z 206,. 
The amplitude of the TS pressure fluctuations decreases smoothly at a constant phase 
when the distance to the wall increases. This is why our isobaric surfaces have the 
shape of arches, which are initially two-dimensional. In contrast, because of the 
adherence condition at the wall, a perturbation of spanwise vorticity at any height 
will induce a perturbation of the opposite sign at the wall. The change of sign 
occurs at the critical layer x2( for which u I ( x 2 < )  = c,., the phase speed of the TS 
waves : under the low-pressure arches are found negative vorticity fluctuations (i.e. an 
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FIGURF 18 Top view for 2606, < Y < 3736,: isosurfaces (ol = 0.1U,6, (grey) and w1 = -0.lU,6, 
(dark), together with the most three-dimensional vortex lines in this region. Domain duplicated. 

FIGURE 19. Magnification of the leftmost part of figure 18, x1/6, E [260,291]), with more vortex 
lines. above and below the critical layer (left and right plots, respect11 ely. Domain duplicated. 

increase of 1 ~ 2 1 ) .  The converse is observed in the high-pressure arches. The further 
three-dimensionalization appears in the figure through the streamwise stretching of 
the 0; contours through the isobaric arches, at an angle with respect to the wall which 
is of about 5". Figure 18 confirms that the streamwise stretching of vorticity is weak: 
the lines shown originate from the points where 1011 is the highest in the portion of 
the domain considered. These lines are nevertheless hardly three-dimensionalized yet. 
Let us now focus on the region between 2606, and 2916, (figure 19), distinguishing 
between the lines located above and below the critical layer. As expected, the lines 
above the critical layer are (slightly) stretched towards the positive X I  in between the 
legs of the A-shaped structures. Below xzr, they wave 180" out of phase. 

We now provide some data supporting the idea that the transition in our spatially 
growing calculation begins with the growth of a sub-harmonic mode of secondary 
instability (H-type transition). Within this framework, the basic state consists of a self- 
similar Blasius profile, onto which constant-amplitude TS waves are superimposed. 
This is verified in our simulation up to xl  = 2506,, after which the velocity profile 
starts changing. The solid line in figure 20 shows the streamwise evolution of a 
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FIGURE 20. Amplification curves for (E’)  (solid line), the subharmonic mode in Kachanov & 
Levchenko (1984, stars and triangles for the ‘unprimed’ and ‘primed’ cases, respectively) and in 
Herbert et al. (1986, dashed line). 

time-averaged r.m.s. measure of three-dimensionality, 

(4.4) 
as a function of R = Re:{* which is proportional to the local displacement thickness 
of the layer given by the Blasius laminar self-similar spreading law (3.1). The series 
of symbols shows the growth of the r.m.s. amplitude of the subharmonic mode, 
measured by Kachanov & Levchenko (1984) in two slightly different cases: one 
with a ribbon vibrating at the fundamental only (stars), the other with a ribbon 
also vibrating around the subharmonic (‘primed’ case, triangles). The dashed line 
shows the growth of an H-mode predicted by the secondary-stability theory (Herbert, 
Bertolotti & Santos 1986) in the latter case. All these curves display a subrange 
with approximately exponential growth, at a rate y r  = d[ln(E’)]/dR e 1.5 x the 
different ‘amplitudes’ being of the same order of magnitude. This suggests that the 
growth of (E’) is mostly due to an H-mode, although detuned modes may also be 
present as in the ‘primed’ case of Kachanov & Levchenko (1984). 

The offsets between the curves certainly come from the forcings, although they 
are sufficiently similar to make this comparison relevant: in Kachanov & Levchenko 
(1984), the r.m.s. amplitude of the TS forcing is A = 0.44% and the frequency 
parameter F = 1 0 6 ( 2 n / ~ T s ) ~ r ( v / U ~ )  = 124, whereas we have in our case A = 0.35% 
and F = 105. For such small amplitudes (i.e. A < 5 secondary-stability theory 
(Santos & Herbert, 1986), confirmed by experiments (Thomas 1987) find “a broad 
peak of amplification for detuned modes in the neighbourhood of the subharmonic 
mode” (Herbert 1988), the fundamental mode of secondary instability being damped. 
Note that branch I1 of the Blasius stability diagram is crossed at R = 606 in for 
F = 124 and at R e 700 for F = 105, without any visible effect on y r .  This confirms 
that, as Herbert (1988) said, “modes of secondary instability and oblique TS modes 
are two different kinds of animals”. 
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As mentioned by a referee, a detailed comparison of the growth rates of the 
separated leading modes would be necessary to conclude whether the subharmonic 
secondary instability has been properly captured. This has been done by Thumm et 
al. (1989) in a DNS of transition in a compressible spatially developing boundary 
layer. We have also carried out DNS of our weakly-compressible spatial boundary 
layer, at the same conditions (resolution, boundary conditions) as the LES: the DNS 
blows up during the early stage of transition, but before this happens predicts results 
in very good agreement with the LES. This is a further argument that our subgrid 
model is inactive during this stage, which was the required aim. 

To complete discussion of the transition process, let us come back to the range 
3006, 5 x1 5 4006,, immediately downstream of the subharmonic transitional region, 
where figure 1 3 shows laminar-looking longitudinal low- and high-speed streaks. 
Figure 14 also shows that the pressure is quasi-uniform in this region. This is 
reminiscent of the exact solution to the Euler equations in a constant shear at 
uniform pressure (in an unbounded domain) proposed in Mitais et al. (1992). This 
solution consists of ‘vertical’ slices of fluid, parallel to the flow direction. They 
move vertically at a constant velocity, and their longitudinal perturbed velocity is 
proportional to t .  Their perturbed velocity, with respect to the basic flow ii(x2), is 
given by 

1 

where u;,(x3) is arbitrary, U;~(X~) being either zero or proportional to u&. This solution 
can be generalized to viscous flows in the case zt2,(x3) cc sin (Px~) .  The perturbed 
velocity then reads 

41x3, t )  = 0. 

Of course, it is still assumed that diil/dx2 is a constant (which is acceptable close 
to the wall), and the adherence condition at the wall is not accounted for, which is 
highly questionable. Notice also that these solutions which, initially, grow linearly 

FIGURE 21. (a) lsosurface p = 0.990 p, = p-, -0.057 ( i p x U : ) ,  plus 100 vortex lines passing through 
it, coloured by their local vorticity magnitude. Perspective view. ( b )  Same as (a) but from the side. 

F I G U R ~  22. ( a )  Magnification of the domain showing: isosurfaces (01 = O.lSU,/S, (green) and 
-O.l5U,/6, (white); vortex lines coloured by the vorticity magnitude (colourmap on the right), 
passing through points between 520 and 5506,; map at constant x3 of the spanwise vorticity 03, 
associated to the colourmap on the left. Domain duplicated. ( b )  Same as ( a )  but showing the whole 
domain. 
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FIGURE 2 l (a ) .  For caption see page 25. 

FIGURE 22(a). For caption see page 25. 
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FIGURF ? l (h ) .  For caption see page 25. 
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FIGURP 22(h). For caption see page 25. 
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with time, have certain analogies with the algebraic instabilities proposed by Landahl 
(see e.g. Landahl & Mollo-Christensen 1992, pp. 115-122). 

4.4. The late-transitional and turbulent states 
This covers all the domain from x1 = 400& onwards. We will first present visualiza- 
tions of the flow, and then instantaneous or statistical data. 

4.4.1. Visualizations 
In the region we are now looking at, the lowest pressures are recorded away 

from the wall. The isosurface in figure 14 shows a region of intense activity around 
x1 = 550& (i.e. Re,, = 0.88 x lo6) involving hairpin vortices. A close-up of the 
strongest is shown in figure 21. This is, in fact, a one-legged hairpin vortex, the 
branch for which the vorticity vector points downstream (i.e. the one into which o1 
is positive) being the strongest. Note that it involves only vortex lines relatively 
far away from the wall, the lines below having a higher circulation and remaining 
fairly two-dimensional. Consequently, the vorticity magnitude is only of the order 
of O.lU,/Si in the legs and tips of the hairpin vortex, whereas the mean spanwise 
vorticity at the wall, -u:/v, is here = -l.5U,/Si. We note from the side view that 
the vortex lines are inclined at about 20" - 25" with respect to the wall, except at the 
tip of the vortex where they are kinked approximately vertically, probably because of 
self-induction. The low-pressure isosurface follows, except close to the wall where we 
have locally dp/dx2 21 0. 

Zooming out, figure 22 shows that there is in fact a streamwise alignment of vortex 
lines having hairpin shape, the concentration into tubes as in the previous figure 
occurring only locally. This streamwise coherence is emphasized by a map of spanwise 
vorticity in a peak plane. It shows 'braids' being stretched at angles with respect to the 
wall ranging between 10" and 60", with a maximum of probability apparently lower 
than 45". Zooming out again and looking downstream, we can see several such braids 
in the same peak plane, with detachment of vorticity which is tempting to interpret 
in terms of local mixing layers, ejections and bursting events: indeed, in almost all 
detached zones, we can see a local concentration of vorticity corresponding to the tip 
of a hairpin vortex, with, immediately downstream, weaker spanwise vorticity with 
little spanwise organization. Although, here again, our resolution is too low to be 
conclusive, we think that this vorticity corresponds to local mixing layers detached 
from the tip of the hairpins, as in the classical interpretations. This point of view is 
bolstered by the inflectional allure of the local velocity profiles (such as figure lob), 
which seems sufficiently persistent in space and time to be significant and yield 
Kelvin-Helmholtz instability. 

Between 575& and 675& we see less streamwise vorticity near the wall, but about 
as many ejections and hairpin vortices as anywhere else in the turbulent region. This 
is visible in figure 23, where we can also see a map of u', at xI  = 612& showing 
that the height of the streaks is commensurate with that of the hairpins. However, as 
mentioned in the discussion of figures 8 and 9 (page 18), the extremes of u', lie lower, 
in the buffer region, which is confirmed by figure 24, for which the isosurface level 
is larger, in magnitude, than the contour shown at xI = 612~3~. As in the transitional 
regime, we interpret the fact that these extremes are close to the wall as evidence that 
the source of the peak-and-valley splitting lies even closer to the wall. 

The fact that the hairpins are stretched at an angle, with respect to the wall, which is 
less than 45" has so far prevented us from finding simple convincing analytical models. 
Moreover, there is a factor of about 10 between vorticity in the near-wall region and 
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FIGURE 23. Perspective view of region .u/6, E [524,612], showing vortex lines plus a vertical slice of 
u’, at x, = 6126,. Domain duplicated. 

FIGURE 24. Same as in figure 23 but from another viewpoint, showing also the isosurface 
u‘, = -0.01711,. Domain duplicated. 

that in the outer region, the interaction between these regions remaining unclear to 
us. If we accept that the hairpins form by stretching of relatively weak vorticity 
in the logarithmic or wake regions, possibly by some ‘rapid-distortion’ mechanism 
(Townsend 1976), we also have to accept the existence of another mechanism, closer 
to the wall, involving larger vorticities. Among the candidates are purely longitudinal 
alternate vortices at the wall (Blackwelder & Eckelmann 1979), from which the 
hairpins would stem. The reader is referred to Robinson (1991) for review. The 
numerical work of Hamilton, Kim & Waleffe (1995) concerning turbulent plane 
Couette flow supports this interpretation. We have not seen such vortices (the vortex 
lines closest to the wall being spanwise, as in the transitional regime). Instead, we 
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FIGURE 25. Transverse evolution of the r.m.s. velocities ui/u,  and the Reynolds stresses for eight 
streamwise positions: lOP3Re, equal to 640 (curve l), 735 (2), 830 (3), 890 (4), 955 (5) ,  1020 (6), 
1080 (7), 1143 (8). The first two positions are marked with solid lines, the next three with dashed 
lines and the last three with points. 6 stands here for the boundary layer thickness 699. 

still see the spanwise modulation of the vorticity at the wall that we mentioned 
in the previous section. We therefore conjecture that the same purely spanwise 
(i.e. independent of time) mode has survived transition, and that it now essentially 
concerns the viscous sub layer. 

4.4.2. Turbulent Juctuations 
We plot on figure 25 the time- and-spanwise-averaged r.m.s. velocity profiles u'irms 

and the Reynolds stresses for eight streamwise positions. All quantities collapse onto 
a turbulent profile from x1 = 500~5~ (i.e. Re,, = 0.8 x lo6, curve 3 in figure 25) onwards. 
A comparison with experimental and numerical findings is given in figure 26 for the 
turbulent profiles. For this figure, we recall experimental data of Eckelmann (1970) 
reported in Gilbert & Kleiser (1988) (velocity fluctuation profiles in a turbulent chan- 
nel flow) obtained for a friction velocity uT equal to O.O42U,. A very good agreement 
is observed for the streamwise velocity whereas we notice some discrepancies in the 
vertical and spanwise velocities. The same remarks apply to the comparison with the 
DNS of Spalart (1988). The under-evaluation of the vertical and spanwise fluctuation 
velocities is often observed in numerical simulations, even for DNS. This point is 
discussed in Antonia et al. (1992), who invoked the higher resolution needed for the 
longitudinal velocity. 

The Reynolds stresses normalized by the product of streamwise and transverse r.m.s. 
velocities are shown in figure 25(d). They grow during transition and accumulate in a 
turbulent profile, showing that the boundary layer has reached a self-similar state. The 
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FIGURE 26. (a) R.m.s. velocity fluctuations u:/u, for Re,  L lo6, as a function of x ~ / 6  together with 
experimental results of Eckelmann in turbulent channel flow for Re, = 209 (symbols), 6 stands here 
for the boundary layer thickness 699 (for our simulation, we evaluate the equivalent Re, = 300). 
( b )  Same fluctuation profiles together with the DNS of Spalart (1988) for Re0 = 1470, that is 
Red L 2000. 
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FIGURL 27 (a) Reynolds stresses u;u;/u1,,,u2,,, as a function of x2/6, against the experimental 
results of Sabot & Comte-Bellot (1976) reported in Moin & Kim (1982), ( h )  uI,u‘JU$ as a function 
of x2/6 for the same streamwise positions as figure 25 

last normalized profile shows a plateau in fairly good agreement with the experiments 
of turbulent channel flow on Sabot & Comte-Bellot (1976) (figure 27a). Figure 27(b) 
shows the non-normalized Reynolds stress profiles. For example, at Re, = lo6 ,  i s .  
Red, NN 2000, the peak u’,u; = -14 x 10-4U$ is reached at y NN 0.17 61, i.e. NN 12 wall 
units. This is consistent with temporal DNS at higher resolution, in particular the 
ones performed by Ducros (1995) with the same code. 

4.4.3. E d d y  Viscosity 
We plot isosurfaces of the eddy viscosity given by the FS model (figure 28) and the 

FSF model (figure 29) together with isosurfaces of vertical velocity u2. The threshold 
is very low, one third of the molecular viscosity. As expected from $2, our model gives 
lower viscosity than the FS model, which is sensitive to the three-dimensionalization 
of TS waves at the beginning of transition, where the big A-vortices form. At the 
turbulent stage, we plot on figure 30 isosurfaces of the eddy viscosity given by the 
FSF3 model for the same part of the domain as in figure 24. The threshold is now 
eleven times the molecular viscosity. Our FSF model gives high eddy viscosities in 
the head and legs of the hairpin vortices, that is where high vorticity fluctuations are 
reached and small structures are generated. 



32 F. Ducros, P. Comte and M .  Lesieur 

FIGURE 28. Top view of the region XI/& E [150,450] showing the isosurfaces u2 = 0.007U, (grey) 
and, in dark, pt = 0.33p( T,) given a priori by the SF model. Domain duplicated. 

FIGURE 29. Same view as figure 28, but with the dark isosurface pt  = 0.33p( T,) given by the FSF3 
model. Domain duplicated. 

FIGURE 30. Perspective view showing the same vortex lines as in figures 23 and 24, plus the 
isosurface p t  = 1 lp( T,) given by the FSF3 model. Domain duplicated. 

5. Conclusions 
We have performed a large-eddy simulation of the complete transition to turbulence 

in a quasi-incompressible boundary layer, developing spatially above an adiabatic flat 
plate, with weak perturbations superposed upon the laminar upstream profile. This 
problem cannot be tackled with classical subgrid models such as Smagorinsky’s or the 
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structure-function model, which relaminarize the flow. Its solution requires prohibitive 
computing resources (more than 800 hours on a CRAY YMP) if one wants to use 
direct-numerical simulations. 

To solve the problem, we have reformulated the structure-function model (SF), 
expressing the local kinetic-energy spectrum in terms of the second-order structure 
function of the velocity field filtered with the aid of a discretized Laplacian iterated 
three times. This eliminates large-scale oblique perturbations of the flow, which 
turn out to be responsible for a too high SF eddy viscosity when transition starts 
developing. 

This so-called filtered structure-function model (FSF) was used successfully to 
simulate the transition in a spatial boundary layer at Mach 0.5. The compressibility 
(inherent to the numerical method used), was chosen small enough to be negligible in 
the wall region. The computing time required by the LES is about ten times shorter 
than the DNS, which is a considerable improvement for further applications. 

The transition starts with the three-dimensionalization of low pressure arches 
resulting from TS waves travelling at a velocity close to the phase velocity of 
the upstream perturbation. Big A-shaped low-pressure structures are produced, in 
a staggered pattern which is the signature of a subharmonic mode of secondary 
instability. Immediately downstream, a purely spanwise (i.e. time-independent) mode 
emerges from the near-wall region, with homogenization of pressure. It  initiates peak- 
and-valley splitting over about the whole thickness of the layer, without evidence of 
turbulence yet, although the velocity profile starts changing. Pressure anomalies occur 
at the downstream end of the high-speed streaks. Shortly downstream (= 500& 
i.e. Re,, x 0.84 x lo6), the flow has become turbulent, with persistence of the streak 
system. Our interpretation then globally corresponds to that of Klebanoff er al. (1962) 
and Kline et al. (1967), with the aforementioned spanwise mode as a main ingredient, 
which accounts for the stretching of hairpin vortices and the detachment of local 
mixing layers downstream of their tips. More precisely, the hairpin vortices which 
form in the simulation presented are made of vortex lines coming initially outside of 
the near-wall region. Consequently, they carry only about one tenth of the vorticity 
at the wall and are submitted only to moderate stretching. 

Statistics of mean and r.m.s. velocities are provided: they display an error which 
does not exceed 30% with respect to experiments and related temporal DNS. The 
friction coefficient is in particular underestimated. This is due both to the insufficient 
spanwise and transverse resolution in the near-wall region and to the fact that 
our subgrid-scale turbulence model remains slightly over-dissipative in the turbulent 
regime. However, the simulation provides all the known characteristics of transitional 
and turbulent boundary layers. For example, the type and growth rate of the 
prominent three-dimensional mode of secondary instability are well predicted. 

To our knowledge, it is the first time that the LES of complete transition to 
turbulence in a spatially evolving boundary layer has been carried out with a low 
level of upstream forcing. The results presented are only qualitative (as noted by one 
referee), but their quality is sufficient to shed some light on the transition process. In 
particular, figures 13 and 20 suggest that the streaks result from nonlinear interactions 
(since (E’)  has already started saturating where the streaks form) involving oblique 
subharmonic modes. However, the reason why such an interaction should result 
mostly in time-independent modes remains unclear unless one invokes algebraic 
instabilities (see e.g. Landahl & Mollo-Christiansen 1992). Because of their slow 
(spatial) growth, these time-independent instabilities are unlikely to generate the 
streaks directly, but they can resonate with the oblique subharmonic modes and drive 
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their nonlinear evolution. We are not aware of theoretical developments involving 
spatially growing modes of secondary instability and algebraic modes, but it should 
be possible to generalize the formalism thanks to which Benney & Gustavsson (1981) 
accounted for resonances between Orr-Sommerfeld and Squire modes. Note that, 
among the time-independent modes, is the so-called zero-zero mode which accounts 
for the change of shape of the mean velocity profile. With the present results, we 
cannot distinguish the respective roles played by this mode and the other time- 
independent modes in the breakdown to turbulence. All we can say is that the 
breakdown is observed at about x1 = 42Odi, where: (a)  the first ejection occurs (see 
figure 22), (b)  the streaks become turbulent (figure 13), ( c )  the turbulent velocity 
profile is practically established (figure 2 4 .  

The fact that ( 5 )  and ( 5 )  occur simultaneously somewhat simplifies the inter- 
pretation. We will nevertheless not speculate any further. New better-resolved 
simulations are in progress (all available datasets are accessible on request, including 
the present ones). We have also undertaken the same study in a high-Mach-number 
case (Ma = 44, starting upstream with Mack’s second mode perturbed three- 
dimensionally. Preliminary results (Ducros 1995) indicate for the developed turbulent 
boundary layer a vortical structure very similar to the low-Mach-number case. 

We would like to thank J. Ferziger, E. Lamballais, R. Gathmann, 0. Mktais 
and S. Prestemon for fruitful discussions, in particular on subgrid-scale modelling 
and streaks. This work was supported by CNES and Dassault Aviation (Hermes 
program) and by DRET. Computing time was provided by IDRIS and CCVR. 
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